A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG
نویسندگان
چکیده
It is well known that EEG signals of Alzheimer's disease (AD) patients are generally less synchronous than in age-matched control subjects. However, this effect is not always easily detectable. This is especially the case for patients in the pre-symptomatic phase, commonly referred to as mild cognitive impairment (MCI), during which neuronal degeneration is occurring prior to the clinical symptoms appearance. In this paper, various synchrony measures are studied in the context of AD diagnosis, including the correlation coefficient, mean-square and phase coherence, Granger causality, phase synchrony indices, information-theoretic divergence measures, state space based measures, and the recently proposed stochastic event synchrony measures. Experiments with EEG data show that many of those measures are strongly correlated (or anti-correlated) with the correlation coefficient, and hence, provide little complementary information about EEG synchrony. Measures that are only weakly correlated with the correlation coefficient include the phase synchrony indices, Granger causality measures, and stochastic event synchrony measures. In addition, those three families of synchrony measures are mutually uncorrelated, and therefore, they each seem to capture a specific kind of interdependence. For the data set at hand, only two synchrony measures are able to convincingly distinguish MCI patients from age-matched control patients, i.e., Granger causality (in particular, full-frequency directed transfer function) and stochastic event synchrony. Those two measures are used as features to distinguish MCI patients from age-matched control subjects, yielding a leave-one-out classification rate of 83%. The classification performance may be further improved by adding complementary features from EEG; this approach may eventually lead to a reliable EEG-based diagnostic tool for MCI and AD.
منابع مشابه
EEG synchrony analysis for early diagnosis of Alzheimer's disease: A several synchrony measures and EEG data sets
It has frequently been reported in the medical literature that the EEG of Alzheimer disease (AD) patients is less synchronous than in healthy subjects. In this paper, it is explored whether loss in EEG synchrony can be used to diagnose AD at an early stage. Multiple synchrony measures are applied to two different EEG data sets: (1) EEG of pre-dementia patients and control subjects; (2) EEG of m...
متن کاملDiagnosis of Alzheimer's disease from EEG signals: where are we standing?
This paper reviews recent progress in the diagnosis of Alzheimer's disease (AD) from electroencephalograms (EEG). Three major effects of AD on EEG have been observed: slowing of the EEG, reduced complexity of the EEG signals, and perturbations in EEG synchrony. In recent years, a variety of sophisticated computational approaches has been proposed to detect those subtle perturbations in the EEG ...
متن کاملA Comparative Study of Synchrony Measures for the Early Detection of Alzheimer's Disease Based on EEG
It has repeatedly been reported in the medical literature that the EEG signals of Alzheimer’s disease (AD) patients are less synchronous than in age-matched control patients. This phenomenon, however, does at present not allow to reliably predict AD at an early stage, so-called mild cognitive impairment (MCI), due to the large variability among patients. In recent years, many novel techniques t...
متن کاملA theta-band EEG based index for early diagnosis of Alzheimer's disease.
Despite recent advances, early diagnosis of Alzheimer's disease (AD) from electroencephalography (EEG) remains a difficult task. In this paper, we offer an added measure through which such early diagnoses can potentially be improved. One feature that has been used for discriminative classification is changes in EEG synchrony. So far, only the decrease of synchrony in the higher frequencies has ...
متن کاملTitle: A theta-band EEG based index for early diagnosis of Alzheimer's disease Running title: EEG based index to improve AD diagnosis
Despite recent advances, early diagnosis of Alzheimer's disease from electroencephalography remains a difficult task. In this paper, we offer an added measure through which such early diagnoses can potentially be improved. One feature that has been used for discriminative classification is changes in electroencephalography synchrony. So far, only the decrease of synchrony in the higher frequenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 49 1 شماره
صفحات -
تاریخ انتشار 2010